
A Better MVC
“You’re holding it wrong.”

Dave DeLong – @davedelong

A guy who thinks too deeply about stuff



Massive View 
Controller





(This is our own fault)



–Literally no one, ever

“I really think we should follow bad programming principles, violate 
encapsulation, and make things tightly coupled.” 



Why do we make this mistake?
• Apple “tells us” to

• Revert to the default

• External constraints



–George Santayana

“…when experience is not retained, … infancy is perpetual. Those 
who cannot remember the past are condemned to repeat it.”



Making some observations
Huh, that’s interesting…



#1: MVC is not a Pattern
• MVC is a philosophy

• Separate storage from networking from parsing from routing from 
business logic from rendering from view hierarchy from …

• “Who should care about this logic?”



#2: Patterns are Tools
• Similar problems → similar solutions → similar patterns

• Different problems → different solutions → different patterns

• Good developers learn patterns

• Great developers learn problems



#3: Naming is Hard
• Just because it has "Controller" in the name, doesn't mean it's a 

Controller

• UIViewController is not a Controller

• It performs view-related things



#4: Views don’t fill the screen
• Your screen of app UI is not a single UIView

• Why is your screen of app UI a single UIViewController?

• UIViewControllers don’t have to fill the screen



Thinking this through
That’s nice; so what?



#1: Decompose UIViewControllers
• Decomposition is the fundamental skill of programming

• Break apart your UIViewControllers

• A UIViewController that …

• Only shows an image?

• Only shows a single horizontal line?

• Is a cell in a UITableView or UICollectionView?



#2: Compose UI
• Build your UI by composing UIViewControllers

• UIViewController.addChild(_:) // added in iOS 5



#3: Reuse UIViewControllers
• You don’t rewrite UILabel every time you need to show text

• Expect to use build and re-use UIViewControllers

• ContainerViewController

• StackViewController

• ScrollingContentViewController

• Accidental consistency



#4: Forget UIView
• You'll rarely subclass UIView

• UIView is for rendering or interaction

• Render UI with UILabel and UIImageView

• Handle interaction with UIGestureRecognizer

• Consider composing complex views in a UIViewController



Putting this in to practice
Your ideas intrigue me and I wish to subscribe to your newsletter



#1: Show Data or Children
• Generally, UIViews either compose or render

• Rendering happens with UILabel and UIImageView

• Everything else composes those

• Aim for the same with UIViewControllers



#2: Think with generic functions

Some Object
Input Output



ListViewController<T>

Array<T>

Item 1

Item 2

Item 3

Item 4

• • •

shouldSelect(_ item: T) -> Bool 

willShow(_ item: T)

perform(_ action: Action<T>)



#2: Think with generic functions
• (T) → T and (T) → Void 

• “What goes in, must come out”

• Input: datasource, parameters, signal/observable…

• Output: delegate, callbacks, signal/observable…

• Violating this violates encapsulation



#3: Prefer XIBs over Storyboards
• Segues are Problematic™

• Navigation violates the “(T) → T” constraint

• They break reusability

• -prepareForSegue: is called on the wrong object

• XIBs have a 1-to-1 relation between UIViewController and UI

• Can still use outlets and custom initializers



#3: Prefer XIBs over Storyboards

Detail ViewDetail ViewMaster List

show(detailViewController, sender: self) 

performSegue(withIdentifier: “showDetail”, sender: self)

Shows



#3: Prefer XIBs over Storyboards

Detail ViewDetail ViewMaster List

show(detailViewController, sender: self) 

performSegue(withIdentifier: “showDetail”, sender: self)

Shows



#3: Prefer XIBs over Storyboards

Detail View

Detail View

Master List

Coordinator

Notifies of 
selection Shows



#4: Adopt this piecemeal
• Don’t rewrite; refactor!

• Refactor to composition as able



Results
• Tiny UIViewControllers (usually under 200 lines)

• Rarely subclass UIView

• Extremely reusable UIViewControllers

• Clear separation of concern

• Happy programmers "



social media

website

email

me@davedelong.com

Thanks!

mailto:me@davedelong.com

